

Chloé Frédette,

candidate au doctorat en sciences biologiques

Marais de saules à effluent nul pour le traitement d'eau contaminée

Introduction

Contamination résiduelle

- Phosphore
- Teinture
- Émergent
- Récalcitrant
- Très toxique

Ciria, M. P., Solano, M. L., & Soriano, P. (2005). Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. *Biosystems Engineering*, *92*(4), 535-544.

Table 3
Biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) removals during the two years of wetland operation

	Removal, %						
	Ist year			2nd year			
	BOD	COD	TSS	BOD	COD	TSS	
Cattail bed Unplanted bed	97±1·2 86±0·5	79 ± 0.3 75 ± 1.3	92 ± 4.2 93 ± 3.0	97±3·0 83±2·7	81 ± 1.0 79 ± 2.1	92±1·3 91±2·8	

Mean values + standard deviation.

Table 4
Percentages of removal of ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N) and P-phosphate during the 2 years of wetland operation

Year	Season	NH ₄ -N removal, %		NO ₃ -N removal, %		Phosphorous removal, %	
		Cattail bed	Unplanted bed	Cattail bed	Unplanted bed	Cattail bed	Unplanted bed
lst year	Summer	19±1·1	10±3·1	63 ± 2.1	76±1·1	39±5·1	31±0.5
	Autumn	22 + 0.8	6 + 2.8	64 + 0.9	78 + 2.0	33 + 0.9	$34 + 1 \cdot 1$
	Winter	20 ± 1.0	7 ± 0.9	60 ± 1.7	74 ± 0.8	36 ± 2.0	30 ± 0.8
2nd year	Spring	30 ± 6.0	13 ± 1.0	70 ± 0.9	84 ± 1.6	-34 ± 2.8	-28 ± 2.1
	Summer	40 + 3.5	11 + 3.4	73 + 1.1	80 + 0.9	11 + 0.2	8 + 3.3
	Autumn	35 + 3.0	17 + 3.0	69 + 1.0	82 + 1.1	12 + 1.0	-4+2.8
	Winter	38 ± 4.1	13 ± 0.9	75 ± 2.1	82 ± 0.8	-40 ± 3.7	-30 ± 7.0

Introduction

Contamination résiduelle

- Phosphore
- Teinture
- Émergent
- Récalcitrant
- Très toxique

Jia, J., Yang, J., Liao, J., Wang, W., & Wang, Z. (1999). Treatment of dyeing wastewater with ACF electrodes1. *Water Research*, 33(3), 881-884.

Table 1. Electrochemical treatment of simulated dyeing wastewater

Dyes	Chromaticity removal (%)	COD remova (%)
Reactive brilliant blue X-BR	100.0	60.0
Reactive brilliant red KM-8B	96.6	44.8
Reactive flavine K-4G	90.0	33.8
Reactive violet K-3R	95.3	53.9
Reactive turquoise blue K-GL	99.5	89.9
Reactive brilliant red K-2G	93.4	50.6
Acid turquoise blue V	98.8	43.6
Acid blue BGA	87.5	41.4
Acid red G	98.0	37.4
Acid red B	93.3	40.3
Acid navy blue GGR	90.7	39.2
Weak acid brilliant blue RAW	95.0	44.4
Weak acid deep blue GR	97.5	52.1
Neutral gray 2BL	93.3	38.0
Direct orange S	96.9	61.2
Direct violet R	98.8	60.3
Direct green B	96.9	40.2
Cationic brilliant blue 2RL	98.4	74.5
Cationic red 2GL	87.5	48.9
Cationic turquoise X-GB	98.9	56.5
Sulfur black BN	96.0	50.9
Sulfur brilliant green GB	100.0	72.5
Vat dark blue VB	98.1	73.2
Vat brilliant violet RR	100.0	69.0
Vat red F3B	100.0	60.9
Vat blue RSN	100.0	70.7
Vat direct black RB	99.6	63.6

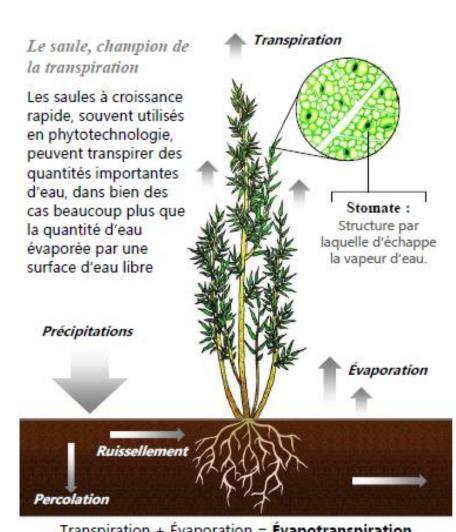
Electrolyses voltage: 25 V, Time: 60 min, Na₂SO₄: 0.5 g l⁻¹.

Introduction

Contamination résiduelle

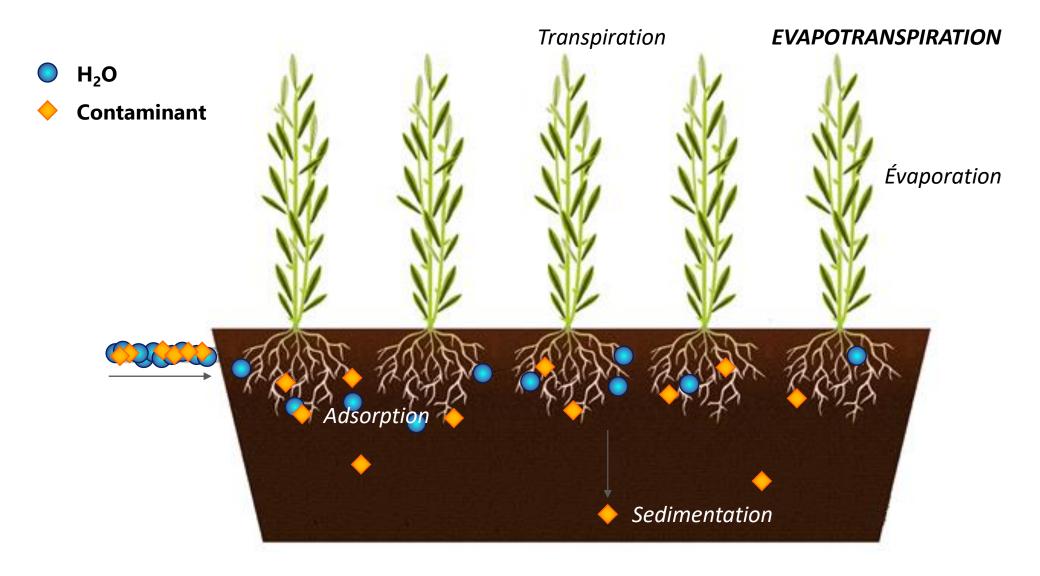
- Phosphore
- Teinture
- Émergent
- Récalcitrant
- Très toxique

Num	Wastewater type	WWTP type	In vitro assay	Removal (%)	Reference
1	Domestic	AS	ER-binding	73	Ito (2008)
2	Swine	UASB + filter	E-screen	83-93	Shappell et al. (2007)
3	Swine	Wetland	MVLN ^a	44-99	Furuichi et al. (2006)
4	Domestic	AS	ER-binding	90 -> 99	Leusch et al. (2006)
5	Domestic	AS	E-screen	> 95	Leusch et al. (2005)
6	Domestic	AS	YES	0-100	Servos et al. (2005)
7	Domestic	AS	MVLN	61–97	Cargouet et al. (2004)
8	Domestic	AS	YES	58 to > 99	Svenson et al. (2003)
9	Domestic	AS	YES	51–67	Holbrool et al. (2002)
10	Domestic	AS	E-screen	91	Korner et al. (2000)
11	Domestic	AS	YES	92	Matsui et al. (2000)


^aMCF-7 human breast carcinoma cell line, stably transfected with an estrogen-regulated luciferase gene.

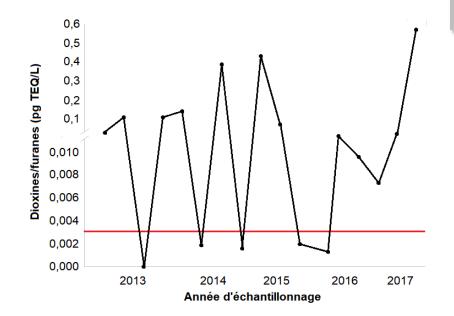
Liu, Z. H., Kanjo, Y., & Mizutani, S. (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review. *Science of the total environment*, 407(2), 731-748.

Marais à effluent nul


- Conçus en Europe (Danemark, Irlande)
- Basés sur l'évapotranspiration
- Plantes utilisées : saules à croissance rapide
- Fonctionnent à l'énergie solaire
- Pas d'effluent... pas de risque de contamination!

Transpiration + Évaporation = Évapotranspiration

Marais à effluent nul

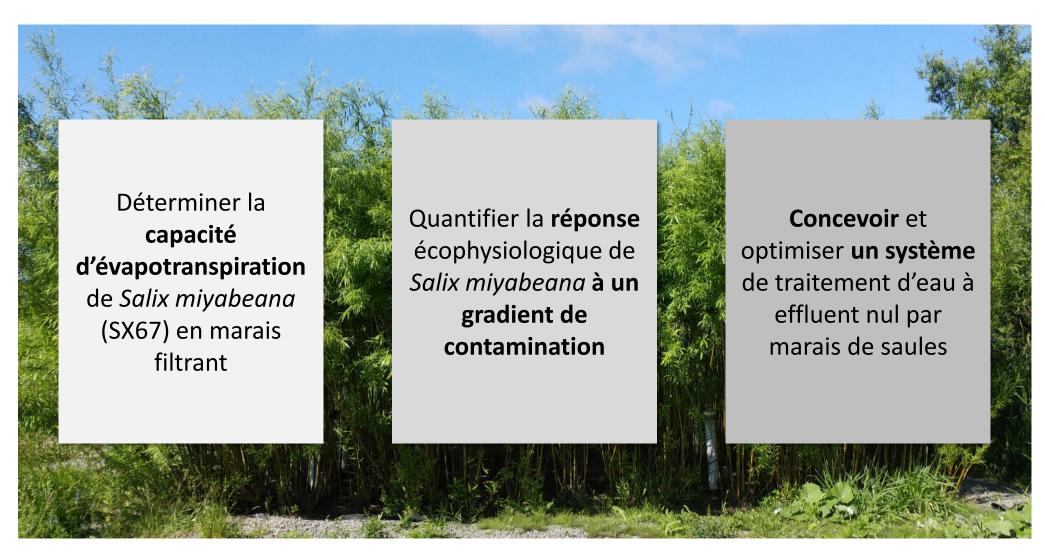

Problématique

Défis

- Volume à traiter
- Phytotoxicité
- Durée de vie
- Climat

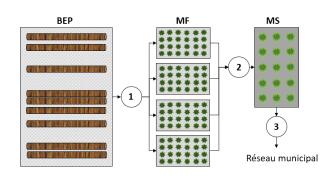
Avantages

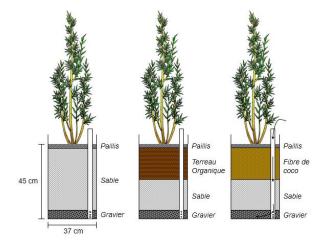
- Efficacité invariable et totale
- Démonstration la faisabilité
- Amélioration des systèmes de traitement conventionnels

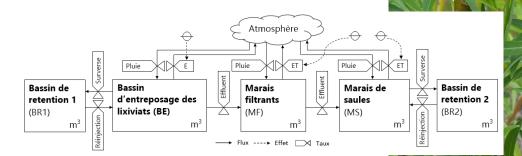

Problématique appliquée

- Normes extrêmement strictes
- Performance variable
- Dépassement occasionnels

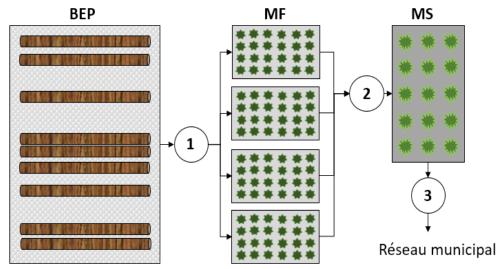
Objectifs

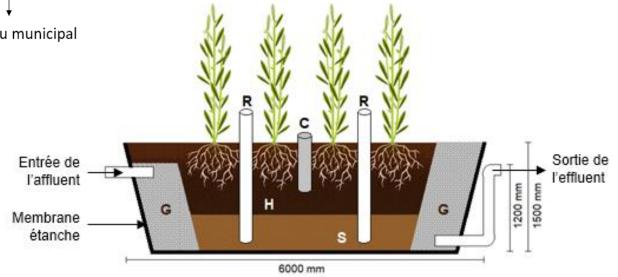





Projet pilote

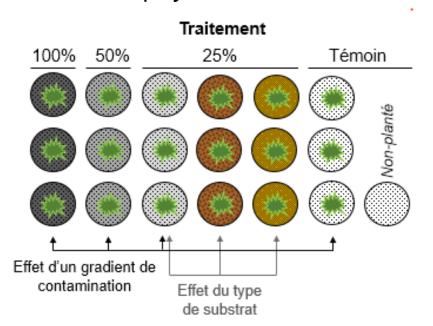
Expérimentation en serre


Modélisation



Projet pilote

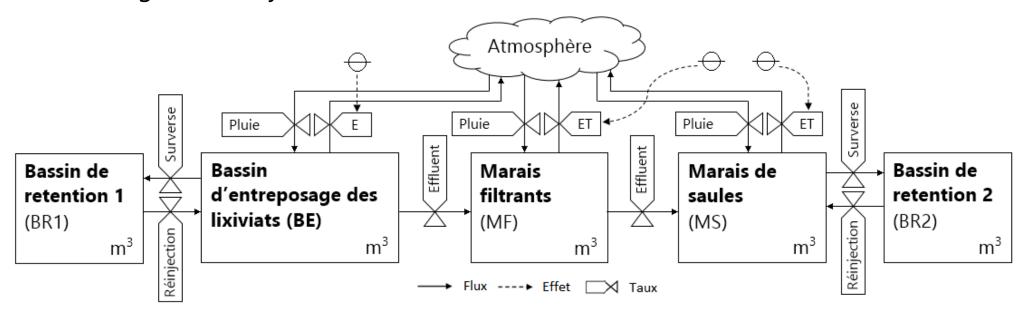
- Site d'entreposage de poteaux de bois
- Pluie contaminée aux produits de préservation du bois (ACC, PCP)
- Traitement par marais filtrants, polissage par marais de saules



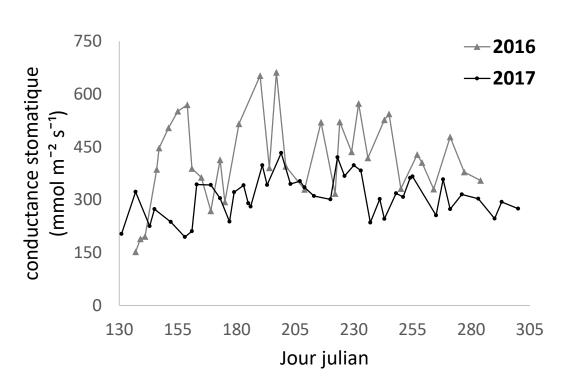
Expérimentation en serre

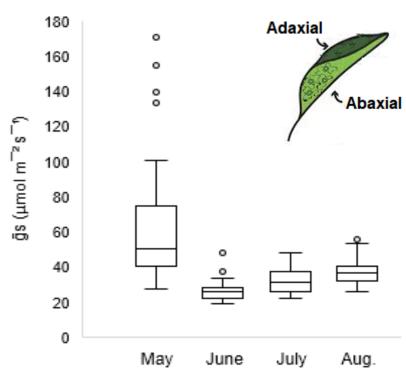
- Test d'un gradient de contamination (eau)
- Test de l'effet du substrat
- Seuil de phytotoxicité

Substrat


Sable Fibre de coco Terreau organique

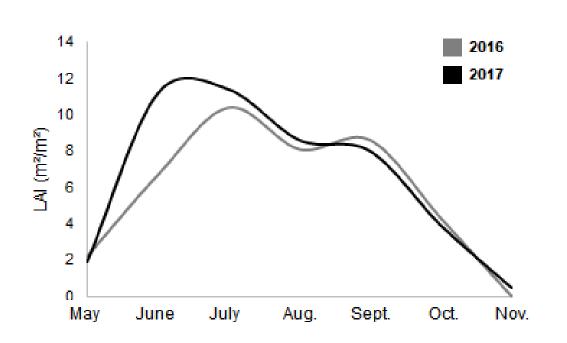
Modélisation

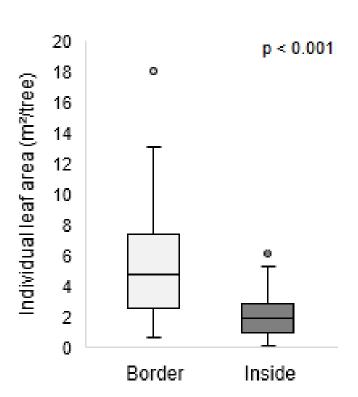

Modèle global du système de traitement



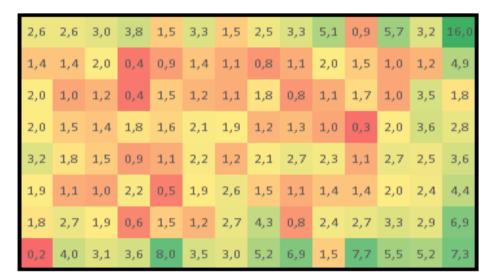
- ▶ Modèle d'évapotranspiration : ET = Gs · LAIactive · D
- Optimisation

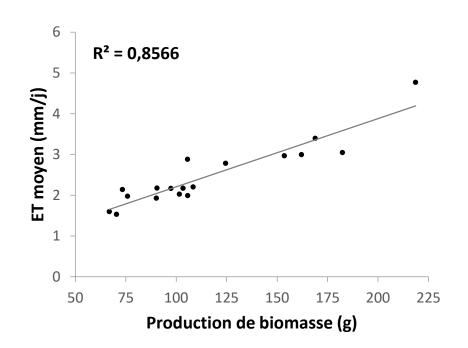
Données écophysiologiques : conductance stomatique (Gs) *in situ*



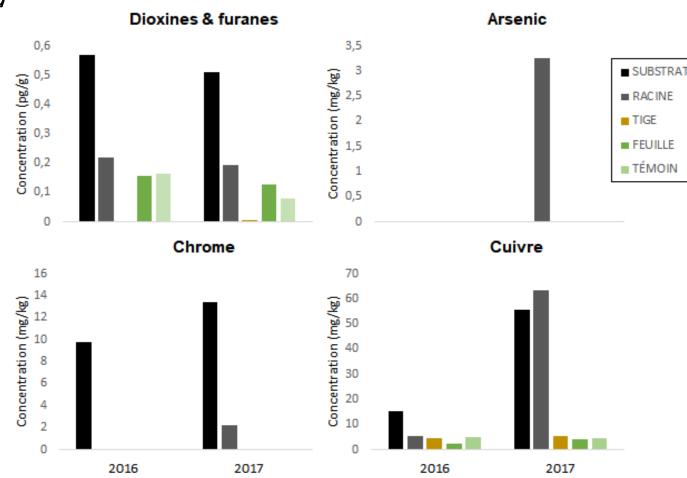


Données écophysiologiques : surface foliaire in situ

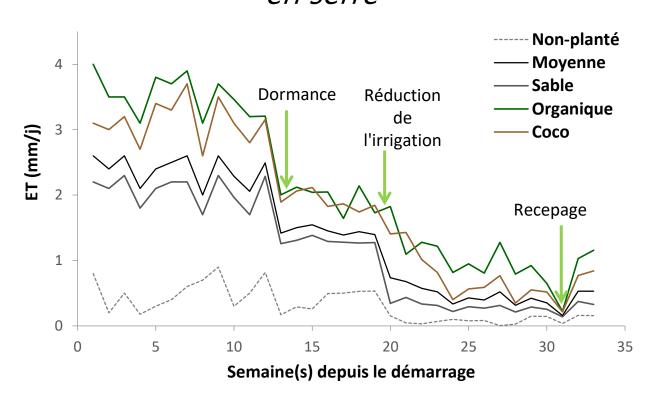



Données écophysiologiques : production de biomasse

Nord Sud


en serre

Contamination: in situ

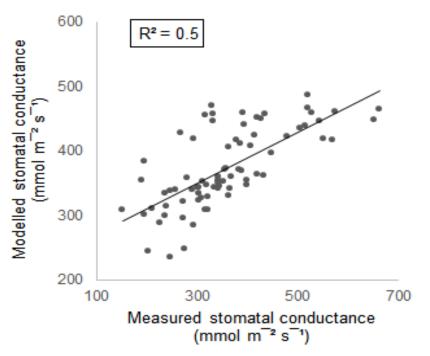


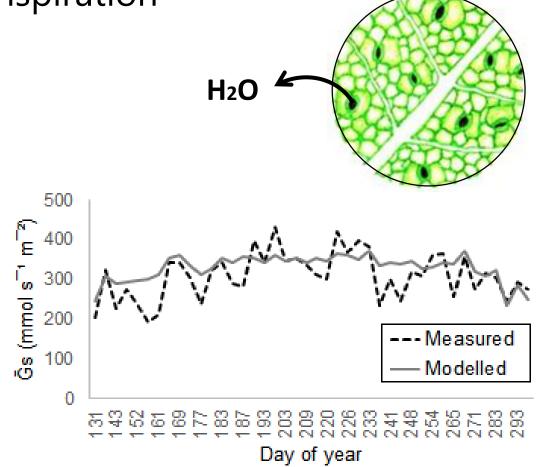
Évapotranspiration

in situ

		noyen n/j)	Cumul. Saison (mm)		
Pluie	-	-	391	712	
ET référence	4,5	3,2	808	749	
ET marais de saules	31	17	4536	2906	

en serre





Modélisation: évapotranspiration

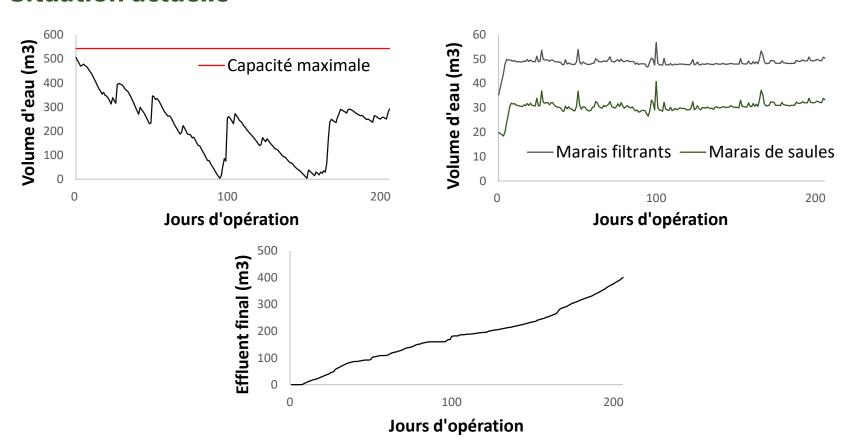
Conductance stomatique

Modélisation: évapotranspiration

)17

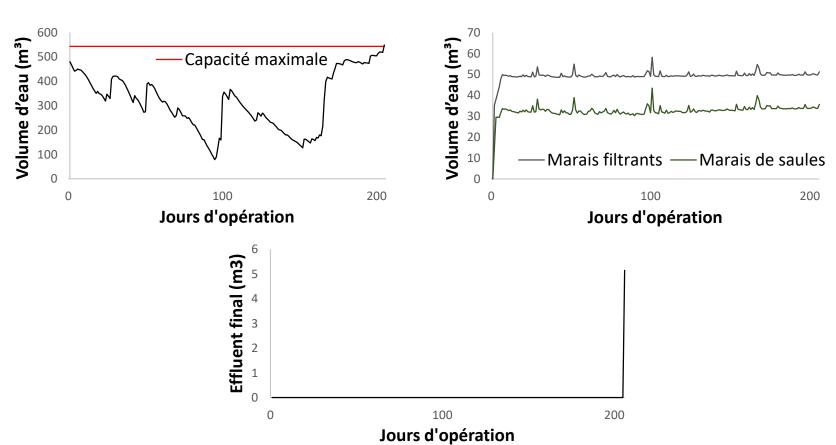
	ET ₀	LAI _{active}	ET _{SX67}	K _(SX67)	ET ₀	LAI _{active}	ET _{SX67}	K _(SX67)
Mai	5,2	3,3	4,3	0,8	4,0	3,4	3,9	1,0
Juin	5,5	8,2	15,5	2,8	3,9	12,1	16,5	4,3
Juillet	5,4	11,6	26,8	5,0	3,8	13,3	19,4	5,1
Août	5,0	10,1	27,4	5,5	3,5	10,7	17,8	5,1
Sept,	3,9	9,5	20,0	5,2	2,6	9,1	13,4	5,1
Octobre	1,8	4,5	8,7	4,8	1,4	4,8	6,4	4,4
Moyenne	4,5	7,9	17,1	4,0	3,2	8,9	12,9	4,2

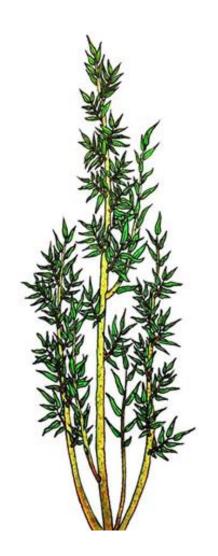
$$ET = \bar{G}s \cdot LAIactive \cdot D$$


ET de référence

$$ET_{sz} = \frac{0.408 \Delta (R_n - G) + \gamma \frac{C_n}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + C_d u_2)}$$

Modélisation : système de traitement


Situation actuelle


Modélisation : système de traitement

Circuit fermé

Perspectives

- Meilleure gestion de la contamination résiduelle
- Amélioration de l'efficacité de traitement
- Adaptée à divers type d'effluent
- Autres applications possibles :
 - Traitement de lixiviats de site d'enfouissement
 - Rétention des eaux pluviales
 - Interception des eaux de ruissèlement

-

Merci! Questions?

